Welcome to WBCS Notebook, where you can ask questions and receive answers from other members of the community.
0 votes
31 views
in INDIAN ECONOMY by (300 points)

Effects of melting parameters and quartz purity on silica glass crucible produced by arc method

We have investigated the effect of hydroxyl (OH) content in fused silica crucible on the scintillation and optical properties of the CsI single crystal, but not limited to, grown by Bridgman technique. For the purpose, 0.1 mol% Tl doped CsI single crystals were grown in crucibles made from fused silica of different grades with OH content varying from 20 ppm to 200 ppm. Silica glass of crucibles was characterized by FTIR and UV–VIS-NIR spectroscopy for the estimation of OH content. Grown crystals were tested for their scintillation performance and a correlation between OH content in silica glass and crystal quality is established. The possibility of ‘OH’ out-diffusion from silica crucible into the melt at higher temperature was further established by temperature dependent study of outgassing from silica crucible by residual gas analyzer (RGA). Further, an optimized process for silica crucible annealing to remove OH (<20 ppm) is proposed to achieve excellent crystal quality of a 5.6% energy resolution at 662 keV without any co-doping in Tl doped CsI.

In photovoltaic industry, silica crucible has an important influence on the quality of single crystal silicon. To obtain a silica glass crucible with large diameter, high uniformity, and low bubble content, two series of crucibles were prepared by the arc melting method, one with various melting parameters (initial power, melting power, and melting time) and crucible sizes, and the other with various high purity quartz crucible. The bubbles inside the crucible wall and pores on the inner surface were all measured using a polarised optical microscope and a portable microscope. The results show that all crucibles have a bubble aggregation area in their inner surface (0–0.4 mm), in which the density and size of bubbles are affected by melting time, melting power, and the distance between the crucible and the graphite electrode. The uniformity of the crucible decreases as the crucible diameter increases (16–28 inches), and the crucible is relatively stable when the initial power is below 400 kW. In final, a silica crucible with large size (diameter of 28 inches) and low bubble content on inner surface (∼50% reduction than that of traditional crucibles) was successfully prepared, which is of great value to the photovoltaic industry.

Currently, the primary materials for fabrication of solar cells are polycrystalline silicon and monocrystalline silicon, with a market share greater than 85% [1]. Solar cells with higher efficiency can be fabricated from monocrystalline silicon, which is usually obtained using the Czochralski (Cz) method [2, 3]. The silica crucibles used in the Cz method are typically made from high-purity amorphous silica. In general, these crucibles consist of two different layers: a transparent layer (Almost bubble free) and a bubble-containing layer (BC layer) [4]. In the outer BC layer, the material contains many bubbles, which decrease transparency. The composition of the gas inside the bubbles remains a matter of debate. It is most likely air, perhaps containing traces of carbon, or water vapour [5]. The inner transparent layer is almost completely transparent, and because this layer is in direct contact with the silicon melt, it is important to keep it free from bubbles throughout the Cz process to ensure that fewer bubbles are released into the melt and subsequently into the silicon ingot.

The silica crucible, which is in direct contact with liquid silicon, has an important impact on the quality of monocrystalline silicon, and silicon wafers with pinholes or dislocations cannot be used for solar-cell fabrication [6]. The industry has therefore devoted extensive efforts to preventing bubbles from entering the melt during the phase of crystal growth [4]. The high-purity quartz sand used to prepare glass crucibles contains various amounts of mineral inclusions (mica, feldspar, etc) and fluid inclusions [7, 8], which can form bubbles at high temperatures. In addition, other gases can affect the quality of monocrystalline silicon. Gas bubbles of SiO and CO can be produced in the melt–crucible interface [9, 10], forming small gas bubbles in the crystal or leading to the generation of dislocations inside the crystal [11]. Argon may also enter the silicon ingot as a protective gas [12]. Reducing the release of bubbles from the transparent layer into the melt during the Cz process can reduce the number of defects in the structure of monocrystalline silicon [13]. In fact, many experiments have been carried out to improve the properties of polycrystalline silicon by improving the purity of fused silica crucibles, but few studies have been reported in the field of single-crystal silicon [14–16]. Therefore, one of the purposes of this experiment is to reduce the bubble content in the transparent layer of crucibles by reducing the impurity element content of quartz.

Another research hotspot in the field of monocrystalline silicon involves increasing the size of the monocrystalline silicon rod, which first requires an increase in the size of the silica crucible [17, 18]. The increasing crystal-preparation time also results in stricter requirements for the quality and service life of the crucible. The preparation parameters must be adjusted to ensure the stability and uniformity of the larger-size crucible, which is urgently required in the industry and is another research purpose of this experiment.

To obtain high-quality monocrystalline silicon, many researchers have attempted to simulate the temperature distribution in the furnace and melt, to optimise the melting parameters of the Cz process [19–24]. The effects of the argon flow rate and silica crucible rotation speed on the concentration of silicon oxygen in single crystals have also been investigated [25–27]. To date, a great amount of research has focused on the use of crucibles (Cz process), while there have been only a few reports on the crucible preparation process, which is the main objective of this paper.

The main goal of this study is to obtain a large crucible with a uniform structure by adjusting the preparation parameters, and with a low bubble content in the transparent layer using high-purity quartz. At the same time, the influence of various melting parameters and impurity element contents on the formation of bubbles in the process of crucible preparation are summarized. To achieve these goals, we prepared two series of fused quartz crucible by graphite arc furnace, and applied them to prepare monocrystalline silicon through CZ method. Then, we examine the structure of silica crucibles prepared with varying initial power, melting power, melting times, and purities of raw materials. The bubbles inside the crucible wall and the pores on the inner surface of the crucibles were observed and measured using a polarised optical microscope and a portable microscope.

2. Materials and methods

2.1. Raw materials

As shown in table 1, the raw material used for the preparation of the silica crucible was quartz sand. The quartz ampoule bottle in this experiment was divided into two categories according to its purity: high purity (HP) and standard purity (SP), all produced by Covia (formerly Unimin, USA), and their product numbers are IOTA-6 and IOTA-CG, respectively. The chemical compositions of two kinds of quartz sand were measured using an inductively coupled plasma mass spectrometer (ICP-MS, Agilent 7500 Ce, Agilent, USA). The total content of impurity elements in HP quartz sand is 6.1 (μg·g−1), less than that of SP quartz sand. Other possible elements (P, Ni, Ba, Mg, Cr, Mn, and Cu) were also tested; they are not shown in table 1 because their contents were less than 0.01 μg·g−1. The block polysilicon used in Cz process, with bulk purity of 99.999999%, was purchased from Wacker Chemie AG, Germany.

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

Related questions

0 votes
0 answers 9 views
0 votes
0 answers 7 views
0 votes
0 answers 10 views
asked in INDIAN ECONOMY by wo225mm4 (300 points)
0 votes
0 answers 17 views
–1 vote
0 answers 18 views
0 votes
0 answers 18 views
0 votes
0 answers 12 views
0 votes
0 answers 19 views
0 votes
0 answers 15 views
0 votes
0 answers 13 views
0 votes
0 answers 12 views
0 votes
0 answers 12 views
0 votes
0 answers 18 views
0 votes
0 answers 18 views
0 votes
0 answers 10 views
+1 vote
0 answers 11 views
0 votes
0 answers 13 views
0 votes
0 answers 16 views
+1 vote
0 answers 9 views
0 votes
0 answers 16 views
0 votes
0 answers 20 views
0 votes
0 answers 30 views
0 votes
0 answers 8 views
0 votes
0 answers 7 views
0 votes
0 answers 15 views
0 votes
0 answers 16 views
0 votes
0 answers 28 views
0 votes
0 answers 22 views
0 votes
0 answers 26 views
0 votes
0 answers 9 views
0 votes
0 answers 20 views
0 votes
0 answers 15 views
Welcome to WBCS Notebook, where you can ask questions and receive answers from other members of the community.

1.1k questions

59 answers

6 comments

282k users

...